ISEG - Lisbon School of Economics and Management

List of Exercises - Chapter 5 $2^{\text {nd }}$ Semester of 2019/2020

March 27, 2021

1. If X and Y have the joint probability distribution

$$
f(x, y)=1 / 4, \text { for all }(x, y) \in\{(-3,-5),(-1,-1),(1,1),(3,5)\}
$$

Compute the $E(Z)$, where $Z=X Y-2 X$.
Solution: By definition, $E\left(Z^{2}\right)=E\left((X Y-2 X)^{2}\right)$ is given by

$$
E\left((X Y-2 X)^{2}\right)=\sum_{(x, y) \in D_{(X, Y)}}(x y-2 x)^{2} f_{X, Y}(x, y)
$$

Since $f_{X, Y}(x, y)=1 / 4$ in $(x, y) \in D_{(X, Y)}$, we have that

$$
E\left((X Y-2 X)^{2}\right)=\frac{1}{4} \sum_{(x, y) \in D_{(X, Y)}}(x y-2 x)^{2}=532 / 4=133
$$

2. Let X and Y be two random variables such that

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x-y}, & x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Compute $E(X Y)$ and $E(X)$.
Solution: By definition $E(X Y)$ is given by

$$
\begin{aligned}
E(X Y) & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x y f_{X, Y}(x, y) d x d y=\int_{0}^{+\infty} \int_{0}^{+\infty} x y e^{-x-y} d x d y \\
& =\int_{0}^{+\infty} y e^{-y} \int_{0}^{+\infty} x e^{-x} d x d y=1
\end{aligned}
$$

To calculate $E(X)$, one can notice that

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{-\infty}^{+\infty} x \int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y d x \\
& =\int_{0}^{+\infty} x e^{-x} \int_{0}^{+\infty} e^{-y} d y d x=1
\end{aligned}
$$

3. If X and Y have the joint probability distribution

X / Y	-1	0	1
0	0	$1 / 6$	$1 / 12$
1	$1 / 4$	0	$1 / 2$

Prove that
(a) $\operatorname{cov}(X, Y)=0$;

Solution: Taking into account the properties of the covariance, we know that

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

therefore, we need to compute

$$
\begin{aligned}
E(X Y) & =\sum_{x=0}^{1} \sum_{Y=-1}^{1} x y P(X=x, Y=y)=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4} \\
E(Y) & =\sum_{x=0}^{1} \sum_{y=-1}^{1} y P(X=x, Y=y)=\sum_{y=-1}^{1} y P(Y=y)=\frac{1}{3} \\
E(X) & =\sum_{x=0}^{1} \sum_{x=-1}^{1} x P(X=x, Y=y)=\sum_{x=0}^{1} x P(X=x)=\frac{3}{4}
\end{aligned}
$$

Therefore $\operatorname{Cov}(X, Y)=\frac{1}{4}-\frac{3}{4} \times \frac{1}{3}=0$.
(b) the two random variables are not independent. To check the random variables are dependent, one can check that

$$
0=P(X=0, Y=-1) \neq P(X=0) \times P(Y=-1)=\frac{1}{4} \times \frac{1}{4}
$$

4. If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{cc}
1+x & , \text { for }-1<x \leq 0 \\
1-x & , \text { for } 0<x<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

and $U=X$ and $V=X^{2}$, show that
(a) $\operatorname{cov}(U, V)=0$;
(b) U and V are dependent.
5. Let X_{1}, X_{2}, and X_{3} be independent random variables with means 4, 9, and 3 and the variances 3,7 , and 5 .
(a) Find the means and the variances of $Y=2 X_{1}-3 X_{2}+4 X_{3}$ and $Z=X_{1}+2 X_{2}-X_{3}$. Solution: $E(Y)=-7, \operatorname{Var}(Y)=155, E(Z)=19$ and $\operatorname{Var}(Z)=36$.
(b) Repeat (a) and (b) dropping the assumption of independence and using instead the information that $\operatorname{cov}\left(X_{1}, X_{2}\right)=1, \operatorname{cov}\left(X_{2}, X_{3}\right)=-2$, and $\operatorname{cov}\left(X_{1}, X_{3}\right)=-3$.
Solution: $E(Y)=-7, \operatorname{Var}(Y)=143, E(Z)=19$ and $\operatorname{Var}(Z)=54$.
6. If the joint probability density of X and Y is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
\frac{1}{3}(y+x) & , \text { for } 0<x \leq 1,0<y<2 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Compute $\operatorname{Var}(X \mid Y=y)$.
Solution: We start ba noticing that $\operatorname{Var}(X \mid Y=y)=E\left(X^{2} \mid Y=y\right)-(E(X \mid Y=y))^{2}$. To compute the previous expected values, one has to derive the conditional density function of X given that $Y=y$. Let's start with the following computations:

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x= \begin{cases}\int_{0}^{1} \frac{1}{3}(y+x) d x, & 0<y<2 \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{1}{6}(1+2 y), & 0<y<2 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Therefore,

$$
f_{X \mid Y=y}(x)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}= \begin{cases}2 \times \frac{y+x}{1+2 y}, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

where y is fixed. Now, we can calculate the expected values

$$
\begin{array}{r}
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y=y}(x) d x=\int_{0}^{2} 2 x \times \frac{y+x}{1+2 y} d x=\frac{2+3 y}{3+6 y} \\
E\left(X^{2} \mid Y=y\right)=\int_{-\infty}^{\infty} x^{2} f_{X \mid Y=y}(x) d x=\int_{0}^{2} 2 x^{2} \times \frac{y+x}{1+2 y} d x=\frac{3+4 y}{6+12 y}
\end{array}
$$

The usual calculations allow us to get

$$
\operatorname{Var}(X \mid Y=y)=E\left(X^{2} \mid Y=y\right)-(E(X \mid Y=y))^{2}=\frac{1}{36}\left(3-\frac{1}{(2 y+1)^{2}}\right)
$$

7. Let (X, Y) be a discrete random vector with joint probability function given by:

$$
f(x, y)=\frac{x+y}{21}, x=1,2 ; y=1,2,3
$$

(a) Compute the means and variances of X and Y

Solution: $E(X)=33 / 21, E(Y)=46 / 21, \operatorname{Var}(X)=12 / 49$ and $\operatorname{Var}(Y)=$ 278/441.
(b) Using $E(X Y)$ analyze the independence of the two random variables and compute the correlation coefficient.
Solution: $E(X Y)=24 / 7 . X$ and Y are not independent. $\rho_{X, Y}=-0.035$
(c) Compute $E(X \mid Y=1)$

Solution: $E(X \mid Y=1)=8 / 5$.

$$
P(X=x \mid Y=1)= \begin{cases}2 / 5, & x=1 \\ 3 / 5, & x=2 \\ 0, & \text { otherwise }\end{cases}
$$

8. Suppose that $E(Y \mid X=x)=9+x$. If the $E(X)=11$ and $\operatorname{Var}(X)=290$, what is $\operatorname{cov}(Y, X) ?$

Solution: We start by noticing that $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$, which means that we need to discover $E(X Y)$ and $E(Y)$. From the tower property, we now that

$$
E(Y)=E(E(Y \mid X))=E(9+X)=9+E(X)=20
$$

Moreover,

$$
\begin{aligned}
E(X Y) & =E(E(X Y \mid X))=E(X E(Y \mid X))=E(X(9+X))=9 E(X)+E\left(X^{2}\right) \\
& =99+\left(\operatorname{Var}(X)+(E(X))^{2}\right)=99+\left(290+11^{2}\right)=99+411=510
\end{aligned}
$$

Consequently the $\operatorname{Cov}(X, Y)=510-11 \times 20=290$.
9. Let X and Y be two continuous random variables such that the conditional density function of X given $Y=y$ is

$$
f_{X \mid Y=y}(x)= \begin{cases}\frac{1}{2-y}, & y<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

and the marginal density of Y is given by

$$
f_{Y}(y)= \begin{cases}1-y / 2, & 0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of X.
Solution: Firstly, we can compute

$$
E(X \mid Y=y)=\int_{-\infty}^{+\infty} x f_{X \mid Y=y}(x) d x=\int_{y}^{2} \frac{x}{2-y} d x=1+y / 2
$$

Secondly, we can use the tower property

$$
E(X)=E(E(X \mid Y))=E(1+Y / 2)=1+E(Y) / 2 .
$$

By definition,

$$
E(Y)=\int_{-\infty}^{+\infty} y f_{Y}(y) d y=\int_{0}^{2} y(1-y / 2) d y=2 / 3 .
$$

Therefore $E(X)=1+1 / 3=4 / 3$.
10. Let (X, Y) be a two dimensional random variable, such that its set of discontinuities is $D_{X, Y}=\{(0,1),(0,2),(1,0),(1,1),(1,2)\}$ and its probability function is

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x+y}{a}, & (x, y) \in D_{X, Y} \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find a and represent $f_{X, Y}$ by filling a suitable table.

Solution: $a=9$
(b) Compute $E(X)$ and $E(Y)$.

Solution: $E(X)=2 / 3$ and $E(Y)=13 / 9$.
(c) Calculate $\operatorname{Cov}(2 X, 3 Y)$ and $\operatorname{Var}(X+Y)$.

Solution: $\operatorname{Cov}(2 X, 3 Y)=-4 / 9$ and $\operatorname{Var}(X+Y)=38 / 81$
(d) Characterize the distribution of $E(Y \mid X)$.

Solution: If $Z=E[Y \mid X]$

$$
P(Z=z)= \begin{cases}1 / 3, & z=5 / 3 \\ 2 / 3, & z=4 / 3 \\ 0, & \text { otherwise }\end{cases}
$$

11. A company engaged in the trade of various items, whose sales have random behavior. The monthly sales of items A and B, expressed in monetary units, constitute a random vector (X, Y) with joint probability density function given by:

$$
f_{X, Y}(x, y)=\frac{1}{2}, \quad 0<x<2,0<y<x
$$

(a) Compute the means and variaces of X and Y.

Solution:For Y we have the following

$$
f_{Y}(y)=\frac{2-y}{2}, \quad 0<y<2
$$

and

$$
E(Y)=\frac{2}{3} \quad \text { and } \quad \operatorname{Var}(Y)=2 / 9
$$

For X we have the following

$$
f_{X}(x)=\frac{x}{2}, \quad 0<x<2
$$

and

$$
E(X)=\frac{4}{3} \quad \text { and } \quad \operatorname{Var}(X)=2 / 9
$$

(b) Analyze the independence of the two random variables and compute the correlation coefficient.
Solution: The random variables are not independent because $f_{X, Y}(x, y) \neq$ $f_{X}(x) \times f_{Y}(y)$. Additionally,

$$
\rho_{X, Y}=\frac{1-2 / 3 \times 4 / 3}{2 / 9}=1 / 2 .
$$

(c) Find the $E(Y \mid X=1)$.

Solution: For $Y \mid X=1$ we have the following

$$
f_{Y \mid X=1}(y)=\frac{1 / 2}{1 / 2}=1, \quad 0<y<1 .
$$

Therefore,

$$
E(Y \mid X=1)=\frac{1}{2}
$$

(d) Compute the mean and variance of total sales of the two articles.

Solution:Taking into account that

$$
E(X+Y)=E(X)+E(Y), \quad \operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)
$$

we get

$$
E(X+Y)=2 \quad \text { and } \quad \operatorname{Var}(X+Y)=2 / 3
$$

