ISEG - Lisbon School of Economics and Management

List of Exercises - Chapter 5 $2^{\text {nd }}$ Semester of 2019/2020

March 27, 2021

1. If X and Y have the joint probability distribution

$$
f(x, y)=1 / 4, \text { for all }(x, y) \in\{(-3,-5),(-1,-1),(1,1),(3,5)\}
$$

Compute the $E\left(Z^{2}\right)$, where $Z=X Y-2 X$.
2. Let X and Y be two random variables such that

$$
f_{X, Y}(x, y)= \begin{cases}e^{-x-y}, & x>0, y>0 \\ 0, & \text { otherwise }\end{cases}
$$

Compute $E(X Y)$ and $E(X)$.
3. If X and Y have the joint probability distribution

X / Y	-1	0	1
0	0	$1 / 6$	$1 / 12$
1	$1 / 4$	0	$1 / 2$

Show that
(a) $\operatorname{cov}(X, Y)=0$;
(b) the two random variables are not independent.
4. If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{cc}
1+x & , \text { for }-1<x \leq 0 \\
1-x & , \text { for } 0<x<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

and $U=X$ and $V=X^{2}$, show that
(a) $\operatorname{cov}(U, V)=0$;
(b) U and V are dependent.
5. Let X_{1}, X_{2}, and X_{3} be independent random variables with means 4, 9, and 3 and the variances 3,7 , and 5 .
(a) Find the means and the variances of $Y=2 X_{1}-3 X_{2}+4 X_{3}$ and $Z=X_{1}+2 X_{2}-X_{3}$.
(b) Repeat (a) and (b) dropping the assumption of independence and using instead the information that $\operatorname{cov}\left(X_{1}, X_{2}\right)=1, \operatorname{cov}\left(X_{2}, X_{3}\right)=-2$, and $\operatorname{cov}\left(X_{1}, X_{3}\right)=-3$.
6. If the joint probability density of X and Y is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
\frac{1}{3}(y+x) & , \text { for } 0<x \leq 1,0<y<2 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Compute $\operatorname{Var}(X \mid Y=y)$.
7. Let (X, Y) be a discrete random vector with joint probability function given by:

$$
f(x, y)=\frac{x+y}{21}, x=1,2 ; y=1,2,3
$$

(a) Compute the means and variances of X and Y
(b) Using $E(X Y)$ analyze the independence of the two random variables and compute the correlation coefficient.
(c) Compute $E(X \mid Y=1)$
8. Suppose that $E(Y \mid X=x)=9+x$. If the $E(X)=11$ and $\operatorname{Var}(X)=290$, what is $\operatorname{cov}(Y, X) ?$
9. Let X and Y be two continuous random variables such that the conditional density function of X given $Y=y$ is

$$
f_{X \mid Y=y}(x)= \begin{cases}\frac{1}{2-y}, & y<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

and the marginal density of Y is given by

$$
f_{Y}(y)= \begin{cases}1-y / 2, & 0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of X.
10. Let (X, Y) be a two dimensional random variable, such that its set of discontinuities is $D_{X, Y}=\{(0,1),(0,2),(1,0),(1,1),(1,2)\}$ and its probability function is

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x+y}{a}, & (x, y) \in D_{X, Y} \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find a and represent $f_{X, Y}$ by filling a suitable table.
(b) Compute $E(X)$ and $E(Y)$.
(c) Calculate $\operatorname{Cov}(2 X, 3 Y)$ and $\operatorname{Var}(X+Y)$.
(d) Characterize the distribution of $E(Y \mid X)$.
11. A company engaged in the trade of various items, whose sales have random behavior. The monthly sales of items A and B, expressed in monetary units, constitute a random vector (X, Y) with joint probability density function given by:

$$
f_{X, Y}(x, y)=\frac{1}{2}, \quad 0<x<2,0<y<x
$$

(a) Compute the means and variaces of X and Y.
(b) Analyze the independence of the two random variables and compute the correlation coefficient.
(c) Find the $E(Y \mid X=1)$.
(d) Compute the mean and variance of total sales of the two articles.

