ISEG - Lisbon School of Economics and Management

List of Exercises - Chapter 4
$1^{\text {st }}$ Semester of 2020/2021

November 5, 2020

1. Let (X, Y) be a two-dimensional random variable such that its cumulative distribution function is given by

$$
F_{X, Y}(x, y)= \begin{cases}0, & x<0 \text { or } y<0 \\ \frac{x+y}{2}, & 0 \leq x<1 \text { and } 0 \leq y<1 \\ \frac{1+y}{2}, & x \geq 1 \text { and } 0 \leq y<1 \\ \frac{x+1}{2}, & 0 \leq x<1 \text { and } y \geq 1 \\ 1, & x \geq 1 \text { and } y \geq 1\end{cases}
$$

Compute the marginal cumulative distribution functions of X and $Y: F_{X}$ and F_{Y}.
Solution: By definition, we know that $F_{X}(x)=\lim _{y \rightarrow+\infty} F_{X, Y}(x, y)$. Therefore, we have to look to the first, fourth and fifth branch of the function $F_{X, Y}$ and take the limit when $y \rightarrow+\infty$. As a consequence, we get

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{x+1}{2}, & 0 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Similarly, we can obtain

$$
F_{Y}(y)= \begin{cases}0, & y<0 \\ \frac{y+1}{2}, & 0 \leq y<1 \\ 1, & y \geq 1\end{cases}
$$

2. Let X and Y be two independent random variables such that

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
\frac{x}{2}, & 0 \leq x<2, \\
1, & x \geq 2
\end{array} \quad \text { and } \quad F_{Y}(y)= \begin{cases}0, & y<0 \\
\frac{y}{3}, & 0 \leq y<3 \\
1, & y \geq 3\end{cases}\right.
$$

a) Find the joint cumulative distribution function of X and Y.

Solution: The joint cumulative distribution function is

$$
F_{X, Y}(x, y)=F_{X}(x) \times F_{Y}(y)=\left\{\begin{array}{ll}
0, & x<0 \text { or } y<0 \\
\frac{x y}{6}, & 0 \leq x<2,0 \leq y<3 \\
\frac{x}{2}, & 0 \leq x<2, y \geq 3 \\
\frac{y}{3}, & 0 \leq y<3, x \geq 2 \\
1, & x \geq 2, y \geq 3
\end{array} .\right.
$$

b) Compute the marginal density function of X and Y

Solution: To compute the density function of X and Y, one has to calculate the derivative of F_{X} and F_{Y}. Therefore,

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x<2 \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad f_{Y}(y)= \begin{cases}\frac{1}{3}, & 0<y<3 \\
0, & \text { otherwise }\end{cases}\right.
$$

3. If the values of the joint probability function of X and Y are as shown in the table

	X	0	1	2
Y				
0		$1 / 12$	$1 / 6$	$1 / 24$
1		$1 / 4$	$1 / 4$	$1 / 40$
2		$1 / 8$	$1 / 20$	0
3		$1 / 120$	0	0

(a) find:
i. $P(X=1, Y=2)$;

Answer: 1/20
ii. $P(X=0,1 \leq Y<3)$;

Answer: 3/8
iii. $P(X+Y \leq 1)$;

Answer: 1/2
iv. $P(X>Y)$.

Answer: 7/30
(b) find the following values of the joint cumulative distribution function of the two random variables:
i. $F(1.2,0.9)$;

Answer: 1/4
ii. $F(-3,1.5)$;

Answer: 0
iii. $F(2,0)$;

Answer: 7/24
iv. $F(4,2.7)$.

Answer: 119/120
4. If the joint probability distribution of X and Y is given by

$$
f_{X, Y}(x, y)=c\left(x^{2}+y^{2}\right), \quad \text { for } x=1,3 ; \quad y=-1,2 .
$$

a) Find the value of c;

Answer: Since $f_{X, Y}$ is a joint probability distribution we have that $f_{X, Y}(x, y) \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ and $\sum_{(x, y) \in D_{X, Y}} f_{X, Y}(x, y)=1$. From the first condition one gets that $c \geq 0$ and, from the second one, we have

$$
f_{X, Y}(1,-1)+f_{X, Y}(1,2)+f_{X, Y}(3,-1)+f_{X, Y}(3,2)=1 \Leftrightarrow c=\frac{1}{30}
$$

b) Compute $P(X+Y>2)$;

Answer:

$$
P(X+Y>2)=P(X=1, Y=2)+P(X=3, Y=2)=\frac{5}{30}+\frac{13}{30}=\frac{3}{5} .
$$

c) Compute the cumulative distribution function.

Answer: The cumulative distribution function is given by

$$
F_{X, Y}(x, y)=P(X \leq x, Y \leq y)=\left\{\begin{array}{ll}
0, & x<1 \text { or } y<-1 \\
\frac{1}{15}, & 1 \leq x<3,-1 \leq y<2 \\
\frac{7}{30}, & 1 \leq x<3, y \geq 2 \\
\frac{2}{5}, & x \geq 3,-1 \leq y<2 \\
1, & x \geq 3, y \geq 2
\end{array} .\right.
$$

5. Given the values of the joint probability distribution of X and Y shown in the table

	$X=-1$	$X=1$
$Y=-1$	$\frac{1}{8}$	$\frac{1}{2}$
$Y=0$	0	$\frac{1}{4}$
$Y=1$	$\frac{1}{8}$	0

a) Find the marginal probability function of X.

Answer: The marginal probability function of X is given by

$$
f_{X}(x)=\sum_{y=-1}^{1} P(X=x, Y=y)= \begin{cases}\frac{2}{8}, & x=-1 \\ \frac{3}{4}, & x=1 \\ 0, & \text { elsewhere }\end{cases}
$$

b) Find the marginal probability function of Y.

Answer: The marginal probability function of Y is given by

$$
f_{Y}(y)=P(X=-1, Y=y)+P(X=1, Y=y)= \begin{cases}\frac{5}{8}, & y=-1 \\ \frac{1}{4}, & y=0 \\ \frac{1}{8}, & y=1 \\ 0, & \text { elsewhere }\end{cases}
$$

c) Find the conditional probability function of X given $Y=-1$.

Answer: The conditional probability function of X given $Y=-1$ is

$$
f_{X \mid Y=-1}(x)=\frac{P(X=x, Y=-1)}{P(Y=-1)}=\left\{\begin{array}{ll}
\frac{1}{5}, & x=-1 \\
\frac{4}{5}, & x=1 \\
0, & \text { elsewhere }
\end{array} .\right.
$$

d) Compute the conditional cumulative distribution function of X given $Y=-1$.

Answer: The conditional cumulative distribution function of X given $Y=-1$ is

$$
F_{X \mid Y=-1}(x)=P(X \leq x \mid Y=-1)=\sum_{x^{\prime} \leq x} f_{X \mid Y=-1}\left(x^{\prime}\right)= \begin{cases}0, & x<-1 \\ \frac{1}{5}, & -1 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

e) Verify if X and Y are independent.

Answer: $\quad X$ and Y are not independent random variables since $f_{X}(x) \neq$ $f_{X \mid Y=-1}(x)$.
6. If the values of the joint probability function of X and Y are as shown in the table

	X	0	1	2
Y				
0		$1 / 12$	$1 / 6$	$1 / 24$
1		$1 / 4$	$1 / 4$	$1 / 40$
2		$1 / 8$	$1 / 20$	0
3		$1 / 120$	0	0

find
a) the marginal probability function of X;

Answer:

$$
P(X=x)= \begin{cases}7 / 15, & x=0,1 \\ 1 / 15, & x=2 \\ 0, & \text { otherwise }\end{cases}
$$

b) the marginal probability function of Y;

Answer:

$$
P(Y=y)= \begin{cases}7 / 24, & y=0 \\ 21 / 40, & y=1 \\ 7 / 40, & y=2 \\ 1 / 120, & y=3 \\ 0, & \text { otherwise }\end{cases}
$$

c) the conditional probability function of X given $Y=1$;

Answer:

$$
P(X=x \mid Y=1)= \begin{cases}10 / 21, & x=0,1 \\ 1 / 21, & x=2 \\ 0, & \text { otherwise }\end{cases}
$$

d) the conditional probability function of Y given $X=0$.

Answer:

$$
P(Y=y \mid X=0)= \begin{cases}5 / 28, & y=0 \\ 15 / 28, & y=1 \\ 15 / 56, & y=2 \\ 1 / 56, & y=3 \\ 0, & \text { otherwise }\end{cases}
$$

7. If the joint cumulative distribution function of X and Y is given by

$$
F_{X, Y}(x, y)=\left\{\begin{array}{cc}
\left(1-e^{-x^{2}}\right)\left(1-e^{-y^{2}}\right) & , \text { for } x \geq 0, y \geq 0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) Find the marginal cumulative distribution functions of the two random variables X and Y.
Answer:

$$
F_{X}(x)=\lim _{y \rightarrow+\infty} F_{X, Y}(x, y)=\left\{\begin{array}{cl}
\left(1-e^{-x^{2}}\right), & \text { for } x \geq 0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

and

$$
F_{Y}(y)=\lim _{x \rightarrow+\infty} F_{X, Y}(x, y)=\left\{\begin{array}{cl}
\left(1-e^{-y^{2}}\right), & \text { for } y \geq 0 \\
0, & \text { elsewhere }
\end{array}\right.
$$

(b) Find the joint density function of the two random variables X and Y.

Answer:

$$
f_{X, Y}(x, y)=\frac{\partial^{2}}{\partial x \partial y} F_{X, Y}(x, y)=\left\{\begin{array}{cc}
4 x y e^{-\left(x^{2}+y^{2}\right)} & , \text { for } x>0, y>0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(c) Find $P(1<X \leq 2,1<Y \leq 2)$.

Answer:

$$
\begin{aligned}
P(1<X \leq 2,1<Y \leq 2) & =F_{X, Y}(2,2)-F_{X, Y}(1,2)-F_{X, Y}(2,1)+F_{X, Y}(1,1) \\
& =\frac{\left(e^{3}-1\right)^{2}}{e^{8}}
\end{aligned}
$$

(d) Verify if X and Y are independent random variables.

Answer: The random variables X and Y are independent because $F_{X, Y}(x, y)=$ $F_{X}(x) \times F_{Y}(y)$.
8. If the joint probability density of X and Y is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
\frac{1}{4}(2 x+y) & , \text { for } 0<x<1,0<y<2 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find
a) the marginal density of X;

Answer: The marginal density of X is given by

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y= \begin{cases}\frac{1}{4}(4 x+2), & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

b) the conditional density of Y given $X=1 / 4$

Answer: The conditional density of Y given $X=1 / 4$ is given by

$$
f_{Y \mid X=1 / 4}(y)=\left\{\begin{array}{ll}
\frac{f_{X, Y}(1 / 4, y)}{f_{X}(1 / 4)}, & 0<y<2 \\
0, & \text { otherwise }
\end{array}= \begin{cases}\frac{1}{3}\left(y+\frac{1}{2}\right), & 0<y<2 \\
0, & \text { otherwise }\end{cases}\right.
$$

c) the marginal density of Y;

Answer: The marginal density of Y is given by

$$
f_{Y}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x= \begin{cases}\frac{1}{4}(1+y), & 0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

d) the conditional density of X given $Y=1$;

Answer: The conditional density of X given $Y=1$ is given by

$$
f_{X \mid Y=1}(x)=\left\{\begin{array}{ll}
\frac{f_{X, Y}(x, 1)}{f_{Y}(1)}, & 0<x<1 \\
0, & \text { otherwise }
\end{array}= \begin{cases}\frac{1}{2}(2 x+1), & 0<x<1 \\
0, & \text { otherwise }\end{cases}\right.
$$

e) $P\left(\left.X>\frac{1}{4} \right\rvert\, X<\frac{3}{4}\right)$.

Answer:

$$
P\left(\left.X>\frac{1}{4} \right\rvert\, X<\frac{3}{4}\right)=\frac{P(1 / 4<X<3 / 4)}{P(X<3 / 4)}=\frac{\int_{1 / 4}^{3 / 4} f_{X}(x) d x}{\int_{-\infty}^{3 / 4} f_{X}(x) d x}=\frac{1 / 2}{21 / 32}=\frac{16}{21}
$$

f) the joint cumulative distribution function of X and Y.

Answer: The joint CDF is given by

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, t) d t d u= \begin{cases}0, & x<0 \text { or } y<0 \\ \frac{1}{4}\left(y x^{2}+x y^{2} / 2\right), & 0 \leq x<1,0 \leq y<2 \\ \frac{1}{4}\left(y+y^{2} / 2\right), & x \geq 1,0 \leq y<2 \\ \frac{1}{2}\left(x^{2}+x\right), & 0 \leq x<1, y \geq 2 \\ 1, & x \geq 1, y \geq 2\end{cases}
$$

9. Consider the joint probability density function of X and Y given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
k x y & , \text { for } 0<x<2,0<y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

a) Determine k so that $f_{X, Y}$ can serve as a joint probability density function.

Answer: If $f_{X, Y}$ is a joint probability density function, then $f_{X, Y}(x, y) \geq 0$ for all $(x, y) \in \mathbb{R}^{2}$ and $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x d y=1$. From the first condition we get that $k \geq 0$ and from the second one we have that

$$
\int_{0}^{2} \int_{0}^{1} f_{X, Y}(x, y) d y d x=1 \Leftrightarrow k=1
$$

b) Determine the joint distribution function of X and Y.

Answer: The joint CDF is given by

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X, Y}(u, t) d t d u= \begin{cases}0, & x<0 \text { or } y<0 \\ \frac{x^{2} y^{2}}{4}, & 0 \leq x<2,0 \leq y<1 \\ y^{2}, & x \geq 2,0 \leq y<1 \\ \frac{x^{2}}{4}, & 0 \leq x<2, y \geq 1 \\ 1, & x \geq 2, y \geq 1\end{cases}
$$

c) Determine the marginal cumulative distribution function of X and Y.

Answer: The marginal CDF of X is given by

$$
F_{X}(x)=\lim _{y \rightarrow \infty} F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{+\infty} f_{X, Y}(u, y) d y d u= \begin{cases}0, & x<0 \\ \frac{x^{2}}{4}, & 0 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

The marginal CDF of Y is given by

$$
F_{Y}(y)=\lim _{x \rightarrow \infty} F_{X, Y}(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{+\infty} f_{X, Y}(x, t) d x d t= \begin{cases}0, & y<0 \\ y^{2}, & 0 \leq y<1 \\ 1, & y \geq 1\end{cases}
$$

d) Determine the marginal probability density function of X and Y.

Answer: The marginal probability density function of X is given by

$$
f_{X}(x)=F_{X}^{\prime}(x)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y= \begin{cases}\frac{x}{2}, & 0<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

The marginal probability density function of Y is given by

$$
f_{Y}(y)=F_{Y}^{\prime}(y)=\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x= \begin{cases}2 y, & 0<y<1 \\ 0, & \text { elsewhere }\end{cases}
$$

e) Verify if X and Y are independent.

Answer: The random variables are independent because $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$.
f) Compute $P(X<1.25, Y \leq 0.5), P\left(Y>\frac{X}{4}+\frac{1}{2}\right)$ and $P\left(Y<\frac{X}{4}+\frac{1}{2}\right)$.

Answer:

$$
\begin{aligned}
& P(X<1.25, Y \leq 0.5)=F_{X, Y}(1.25,0.5)=\frac{25}{256} \\
& P\left(Y>\frac{X}{4}+\frac{1}{2}\right)=\int_{0}^{2} \int_{\frac{x}{4}+\frac{1}{2}}^{1} f_{X, Y}(x, y) d y d x=\frac{7}{24} \\
& P\left(Y<\frac{X}{4}+\frac{1}{2}\right)=1-P\left(Y \geq \frac{X}{4}+\frac{1}{2}\right)=1-P\left(Y>\frac{X}{4}+\frac{1}{2}\right)=\frac{17}{24}
\end{aligned}
$$

g) Compute $f_{X \mid Y=y}$ and $f_{Y \mid X=x}$.

Answer: The conditional probability density function $f_{X \mid Y=y}$ and $f_{Y \mid X=x}$ are given by

$$
f_{X \mid Y=y}(x)=\left\{\begin{array}{ll}
\frac{f_{X, Y}(x, y)}{f_{Y}(y)}, & 0<x<2 \\
0, & \text { elsewhere },
\end{array}= \begin{cases}\frac{x}{2}, & 0<x<2 \\
0, & \text { elsewhere },\end{cases}\right.
$$

and

$$
f_{Y \mid X=x}(y)=\left\{\begin{array}{ll}
\frac{f_{X, Y}(x, y)}{f_{X}(x)}, & 0<y<1 \\
0, & \text { elsewhere }
\end{array}= \begin{cases}2 y, & 0<y<1 \\
0, & \text { elsewhere }\end{cases}\right.
$$

10. Let X and Y be two independent random variables such that

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x<2 \\
0, & \text { elsewhere }
\end{array}, \quad \text { and } \quad f_{Y}(y)= \begin{cases}\frac{1}{3}, & 0<y<3 \\
0, & \text { elsewhere }\end{cases}\right.
$$

Find the joint density function of X and Y.
Answer:

$$
f_{X, Y}(x, y)= \begin{cases}\frac{1}{6}, & 0<x<2,0<y<3 \\ 0, & \text { elsewhere }\end{cases}
$$

11. If the joint probability density of X and Y is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
24 x y & , \text { for } 0<x<1,0<y<1, x+y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

Compute $P(X+Y<1 / 2)$.
Answer:

$$
P\left(X+Y<\frac{1}{2}\right)=\int_{0}^{1 / 2} \int_{0}^{1 / 2-x} 24 x y d y d x=12 \int_{0}^{1 / 2}(1 / 2-x)^{2} x d x=\frac{1}{16}
$$

12. If the joint probability density of X and Y is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
24 y(1-x-y) & , \text { for } x>0, y>0, x+y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

a) Find the marginal density of X;

Answer:

$$
f_{X}(x)=\left\{\begin{array}{cc}
4(1-x)^{3} & , \text { for } 0<x<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

b) Find the marginal density of Y;

Answer:

$$
f_{Y}(y)=\left\{\begin{array}{cc}
12 y(1-y)^{2} & , \text { for } 0<y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

c) Determine whether the two random variables are independent. Answer: X and Y are not independent random variables.

