## ISEG - Lisbon School of Economics and Management

List of Exercises - Chapter 4<br>$1^{\text {st }}$ Semester of 2020/2021

March 25, 2021

1. Let $(X, Y)$ be a two-dimensional random variable such that its cumulative distribution function is given by

$$
F_{X, Y}(x, y)= \begin{cases}0, & x<0 \text { or } y<0 \\ \frac{x+y}{2}, & 0 \leq x<1 \text { and } 0 \leq y<1 \\ \frac{1+y}{2}, & x \geq 1 \text { and } 0 \leq y<1 \\ \frac{x+1}{2}, & 0 \leq x<1 \text { and } y \geq 1 \\ 1, & x \geq 1 \text { and } y \geq 1\end{cases}
$$

Compute the marginal cumulative distribution functions of $X$ and $Y: F_{X}$ and $F_{Y}$.
2. Let $X$ and $Y$ be two independent random variables such that

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
\frac{x}{2}, & 0 \leq x<2, \\
1, & x \geq 2
\end{array} \quad \text { and } \quad F_{Y}(y)= \begin{cases}0, & y<0 \\
\frac{y}{3}, & 0<y<3 \\
1, & y \geq 3\end{cases}\right.
$$

a) Find the joint density function of $X$ and $Y$.
b) Compute the marginal density function of $X$ and $Y$
3. If the values of the joint probability function of $X$ and $Y$ are as shown in the table

|  | $X$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $Y$ |  |  |  |  |
| 0 |  | $1 / 12$ | $1 / 6$ | $1 / 24$ |
| 1 |  | $1 / 4$ | $1 / 4$ | $1 / 40$ |
| 2 |  | $1 / 8$ | $1 / 20$ | 0 |
| 3 |  | $1 / 120$ | 0 | 0 |

(a) find:
i. $P(X=1, Y=2)$;
ii. $P(X=0,1 \leq Y<3)$;
iii. $P(X+Y \leq 1)$;
iv. $P(X>Y)$.
(b) find the following values of the joint cumulative distribution function of the two random variables:
i. $F(1.2,0.9)$;
ii. $F(-3,1.5)$;
iii. $F(2,0)$;
iv. $F(4,2.7)$.
4. If the joint probability distribution of $X$ and $Y$ is given by

$$
f_{X, Y}(x, y)=c\left(x^{2}+y^{2}\right), \quad \text { for } x=1,3 ; \quad y=-1,2 .
$$

a) Find the value of $c$;
b) Compute $P(X+Y>2)$;
c) Compute the cumulative distribution function.
5. Given the values of the joint probability distribution of $X$ and $Y$ shown in the table

|  | $X=-1$ | $X=1$ |
| :---: | :---: | :---: |
| $Y=-1$ | $\frac{1}{8}$ | $\frac{1}{2}$ |
| $Y=0$ | 0 | $\frac{1}{4}$ |
| $Y=1$ | $\frac{1}{8}$ | 0 |

a) Find the marginal probability function of $X$.
b) Find the marginal probability function of $Y$.
c) Find the conditional probability function of $X$ given $Y=-1$.
d) Compute the conditional cumulative distribution function of $X$ given $Y=-1$.
e) Verify if $X$ and $Y$ are independent.
6. If the values of the joint probability function of $X$ and $Y$ are as shown in the table

|  | $X$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| $Y$ |  |  |  |  |
| 0 |  | $1 / 12$ | $1 / 6$ | $1 / 24$ |
| 1 |  | $1 / 4$ | $1 / 4$ | $1 / 40$ |
| 2 |  | $1 / 8$ | $1 / 20$ | 0 |
| 3 |  | $1 / 120$ | 0 | 0 |

find
a) the marginal probability function of $X$;
b) the marginal probability function of $Y$;
c) the conditional probability function of $X$ given $Y=1$;
d) the conditional probability function of $Y$ given $X=0$.
7. If the joint cumulative distribution function of $X$ and $Y$ is given by

$$
F_{X, Y}(x, y)=\left\{\begin{array}{cc}
\left(1-e^{-x^{2}}\right)\left(1-e^{-y^{2}}\right) & , \text { for } x \geq 0, y \geq 0 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

(a) Find the marginal cumulative distribution functions of the two random variables $X$ and $Y$.
(b) Find the joint density function of the two random variables $X$ and $Y$.
(c) Find $P(1<X \leq 2,1<Y \leq 2)$.
(d) Verify if $X$ and $Y$ are independent random variables.
8. If the joint probability density of $X$ and $Y$ is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
\frac{1}{4}(2 x+y) & , \text { for } 0<x<1,0<y<2 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find
a) the marginal density of $X$;
b) the conditional density of $Y$ given $X=1 / 4$
c) the marginal density of $Y$;
d) the conditional density of $X$ given $Y=1$;
e) $P\left(\left.X>\frac{1}{4} \right\rvert\, X<\frac{3}{4}\right)$.
f) the joint cumulative distribution function of $X$ and $Y$.
9. Consider the joint probability density function of $X$ and $Y$ given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
k x y & , \text { for } 0<x<2,0<y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

a) Determine $k$ so that $f_{X, Y}$ can serve as a joint probability density function.
b) Determine the joint distribution function of $X$ and $Y$.
c) Determine the marginal cumulative distribution function of $X$ and $Y$.
d) Determine the marginal probability density function of $X$ and $Y$.
e) Verify if $X$ and $Y$ are independent.
f) Compute Compute $P(X<1.25, Y \leq 0.5), P\left(Y>\frac{X}{4}+\frac{1}{2}\right)$ and $P\left(Y<\frac{X}{4}+\frac{1}{2}\right)$.
g) Compute $f_{X \mid Y=y}$ and $f_{Y \mid X=x}$.
10. Let $X$ and $Y$ be two independent random variables such that

$$
f_{X}(x)=\left\{\begin{array}{ll}
\frac{1}{2}, & 0<x<2 \\
0, & \text { elsewhere }
\end{array}, \quad \text { and } \quad f_{Y}(y)= \begin{cases}\frac{1}{3}, & 0<y<3 \\
0, & \text { elsewhere }\end{cases}\right.
$$

Find the joint density function of $X$ and $Y$.
11. If the joint probability density of $X$ and $Y$ is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
24 x y & , \text { for } 0<x<1,0<y<1, x+y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

a) Compute $P(X+Y<1 / 2)$.
b) Compute $F_{X \left\lvert\, Y=\frac{1}{2}\right.}(x)$
12. If the joint probability density of $X$ and $Y$ is given by

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cc}
24 y(1-x-y) & , \text { for } x>0, y>0, x+y<1 \\
0 & , \text { elsewhere }
\end{array}\right.
$$

a) Find the marginal density of $X$;
b) Find the marginal density of $Y$;
d) Determine whether the two random variables are independent.
13. If $X$ is the amount of money (in dollars) that a salesperson spends on gasoline during a day and $Y$ is the corresponding amount of money (in dollars) for which he or she is reimbursed, the joint density of these two random variables is given by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{1}{25}\left(\frac{20-x}{x}\right) & , \text { for } 10<x<20, \frac{x}{2}<y<x \\
0 & , \text { elsewhere }
\end{array}\right.
$$

find
(a) the marginal density of $X$;
(b) the conditional density of $Y$ given $X=12$;
(c) the probability that the salesperson will be reimbursed at least $\$ 8$ when spending $\$ 12$.

