ISEG - Lisbon School of Economics and Management

List of Exercises - Chapter 3
$1^{\text {st }}$ Semester of 2020/2021

October 28, 2020

1. Let X be a random variable that takes on the values $0,1,2$, and 3 with probabilities $\frac{1}{10}, \frac{3}{10}, \frac{2}{10}, \frac{4}{10}$.
(a) Find $E(X)$ and $E\left(X^{2}\right)$.

Answer: By definition,

$$
E(X)=\sum_{i=0}^{3} i f_{X}(i)=0 \times \frac{1}{10}+1 \times \frac{3}{10}+2 \times \frac{2}{10}+3 \times \frac{4}{10}=\frac{19}{10} .
$$

and

$$
E\left(X^{2}\right)=\sum_{i=0}^{3} i^{2} f_{X}(i)=0^{2} \times \frac{1}{10}+1^{2} \times \frac{3}{10}+2^{2} \times \frac{2}{10}+3^{2} \times \frac{4}{10}=\frac{47}{10}
$$

(b) Use the results of part (a) to determine the value of $E\left[\left(X-\mu_{X}\right)^{2}\right]$.

Answer: One can easily notice that $E\left[\left(X-\mu_{X}\right)^{2}\right]=\sigma_{X}^{2}=E\left(X^{2}\right)-(E(X))^{2}=$ $\frac{109}{100}$.
(c) Use the definition to calculate σ_{X}.

Answer: One can easily see that:

$$
\sigma_{X}^{2}=\sum_{i=0}^{3}\left(i-\mu_{X}\right) f_{X}(i)=\frac{109}{100}
$$

Then,

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}}=\sqrt{\frac{109}{100}}
$$

2. Let X be a continuous random variable and f_{X} its density function

$$
f_{X}(x)=\left\{\begin{array}{ll}
1 / 3, & 0<x<1 \\
4 / 45 x, & 1<x<4
\end{array} .\right.
$$

(a) Compute the expected value and the variance of X.

Solution: $E(X)=61 / 30$ and $\operatorname{Var}(X)=493 / 300$.
(b) Compute the expected value of Y that is given by

$$
Y=g(X)= \begin{cases}0, & X<1 \\ 1, & X \geq 1\end{cases}
$$

Solution: By definition, the expected value of $g(X)$ is given by

$$
E(X)=\int_{0}^{4} g(x) \times f(x) d x=0 \times \int_{0}^{1} \times 1 / 3 d x+1 \times \int_{1}^{4} \frac{4}{45} x d x=2 / 3
$$

(c) Compute the expected value of $Z=2 Y-1$.

Solution: By using the properties of the expected value, we get

$$
E(Z)=2 \times E(Y)-1=1 / 3
$$

3. The demand of a certain product, in Kg , in a random day is well represented by the random variable X with density function

$$
f_{X}(x)= \begin{cases}1 / 5, & 0<x<5 \\ 0, & \text { otherwise }\end{cases}
$$

The firm that sells this product has a profit of 5 euros per Kg sold and a loss of 2 euros per Kg that is not sold.
(a) How many Kg of the product should the firm have in stock to maximize the expected profit?
Solution: Let y be the stock that we intend maximize. Then, the profit of the firm is given my

$$
\begin{aligned}
P & =5 \times \min (y, X)-2 \times \max (0, y-X) \\
& = \begin{cases}5 X-2(y-X), & X<y \\
5 y, & X \geq y\end{cases}
\end{aligned}
$$

Then the expected profit is $E(P)=5 E(\min (y, X))-2 E(\max (0, y-X))$. Since

$$
\begin{aligned}
E(\min (y, X)) & =\int_{-\infty}^{\infty} \min (y, x) f_{X}(x) d x=\frac{1}{5} \int_{0}^{y} x d x+\frac{1}{5} \int_{y}^{5} y d x=\frac{y^{2} / 2+y(5-y)}{5} \\
E(\max (0, y-X)) & =\int_{-\infty}^{\infty} \max (0, y-x) f_{X}(x) d x=\frac{1}{5} \int_{0}^{y} y-x d x=\frac{y^{2}-y^{2} / 2}{5} .
\end{aligned}
$$

Therefore,

$$
E(L)=5 y-7 y^{2} / 10 .
$$

Therefore, the expected profit follows from

$$
\frac{\partial E(P)}{\partial y}=0 \Leftrightarrow 5-7 / 5 y=0 \Leftrightarrow y=25 / 7
$$

because

$$
\frac{\partial^{2} E(P)}{\partial y^{2}}=-7 / 5<0
$$

Equivalently, we could see that

$$
L= \begin{cases}7 X-2 y, & X<y \\ 5 y, & X \geq y\end{cases}
$$

(b) Assume now that X is a discrete random variable, with a probability function

$$
f_{X}(x)=\frac{1}{6}, \quad \text { for } x=0,1,2,3,4,5
$$

and solve question (a).
Solution: It is known that

$$
L=\pi(X, y)= \begin{cases}7 X-2 y, & X \leq y \\ 5 y, & X \geq y\end{cases}
$$

Then the expected value of L is given by

$$
\begin{aligned}
E(L) & =\sum_{x=0}^{5} \pi(x, y) f_{X}(x)=\frac{1}{6} \sum_{x=0}^{5} \pi(x, y)=\frac{1}{6}\left(\sum_{x=0}^{y}(7 x-y)+\sum_{x=y+1}^{5} 5 y\right) \\
& =\frac{1}{6}\left(7 \times \frac{y(y+1)}{2}-2 y(y+1)+5 y(5-y)\right)=\frac{1}{6}\left(-7 / 2 y^{2}+53 / 2 y\right)
\end{aligned}
$$

It is not possible to compute derivatives, therefore we can notice that

$$
\begin{aligned}
& E(\pi(X, 0))=0, \quad E(\pi(X, 1))=\frac{23}{6}, \quad E(\pi(X, 2))=\frac{13}{2}, \quad E(\pi(X, 3))=8 \\
& E(\pi(X, 4))=\frac{25}{3} \quad \text { and } \quad E(\pi(X, 5))=\frac{15}{2}
\end{aligned}
$$

4. Let X be a continuous random variable and f_{X} its distribution. Assume that a and b are constants and prove that the expected value of

$$
Y= \begin{cases}a, & X<0 \\ b, & X \geq 0\end{cases}
$$

is $E(Y)=a P(X<0)+b P(X \geq 0)$.
Solution: By definition of expected value, we have that

$$
\begin{aligned}
E(Y) & =\int_{-\infty}^{0} a f_{X}(x) d x+\int_{0}^{\infty} b f_{X}(x) d x \\
& =a \int_{-\infty}^{0} f_{X}(x) d x+b \int_{0}^{\infty} f_{X}(x) d x \\
& =a P(X<0)+b P(X \geq 0)
\end{aligned}
$$

5. Find $E(X), E\left(X^{2}\right)$ and σ_{X}^{2} for the random variable X that has probability density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{x}{2} & \text { for } 0<x<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Answer: To solve this exercise, one has to use the definitions of $E(X), E\left(X^{2}\right)$ and σ_{X}^{2}. Thus,

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{0}^{2} \frac{x^{2}}{2} d x=\frac{4}{3} \\
E\left(X^{2}\right) & =\int_{-\infty}^{+\infty} x^{2} f_{X}(x) d x=\int_{0}^{2} \frac{x^{3}}{2} d x=2 \\
\sigma_{X}^{2} & =E\left(X^{2}\right)-(E(X))^{2}=\frac{2}{9}
\end{aligned}
$$

6. Let X be a discrete random variable such that

$$
f_{X}(x)= \begin{cases}1 / 2, & x=0 \\ 1 / 3, & x=1 \\ 1 / 6, & x=2\end{cases}
$$

Compute γ_{1}.
Answer: We know that $\gamma_{1}=\frac{E\left[\left(X-\mu_{X}\right)^{3}\right]}{\operatorname{Var}(X)^{3 / 2}}=\frac{\mu_{3}}{\sigma_{X}^{3}}$. Then, we may start by computing

$$
\mu_{X}=E(X)=\sum_{x=0}^{2} x \times f_{X}(x)=\frac{2}{3} .
$$

Additionally,

$$
E\left[\left(X-\mu_{X}\right)^{3}\right]=\sum_{x=0}^{2}\left(x-\frac{2}{3}\right)^{3} \times f_{X}(x)=\frac{7}{27}
$$

Taking into account that

$$
E\left(X^{2}\right)=\sum_{x=0}^{2} x^{2} \times f_{X}(x)=1
$$

Then, $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=1-\frac{4}{9}=\frac{5}{9}$. As a conclusion, $\gamma_{1} \approx 0.383633$.
7. Let X be a continuous random variable such that

$$
f_{X}(x)= \begin{cases}x, & 0<x<1 \\ 1 / 2, & 1<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute γ_{2}.
Answer: We know that $\gamma_{2}=\frac{E\left[\left(X-\mu_{X}\right)^{4}\right]}{\operatorname{Var}(X)^{2}}=\frac{\mu_{4}}{\sigma_{X}^{4}}$. Since

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{1} x^{2} d x+\int_{1}^{2} \frac{x}{2} d x=\frac{13}{12}, \\
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{3} d x+\int_{1}^{2} \frac{x^{2}}{2} d x=\frac{17}{12}, \\
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E(X))^{2}=1 / 3 \\
E\left[\left(X-\mu_{X}\right)^{4}\right] & =\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{4} f_{X}(x) d x=\int_{0}^{1} x\left(x-\mu_{X}\right)^{4} d x+\int_{1}^{2} \frac{1}{2}\left(x-\mu_{X}\right)^{4} d x \\
& =0.1186,
\end{aligned}
$$

one may notice that $\gamma_{2}=\frac{0.1186^{2}}{1 / 9} \approx 1.067$.
8. Let X be a random variable that has probability density function

$$
f(x)=\left\{\begin{array}{cc}
x / 2 & \text { for } 0<x \leq 1 \\
1 / 2 & \text { for } 1<x \leq 2 \\
(3-x) / 2 & \text { for } 2<x<3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find $E(X)$, the median and the mode of X.

Answer: $E(X)=\frac{3}{2}$.
(b) Find $E\left(X^{2}\right)$.

Answer: $E\left(X^{2}\right)=\frac{8}{3}$
(c) Use the results of part (a) and (b) to determine $E\left(X^{2}-5 X+3\right)$.

Answer: $E\left(X^{2}-5 X+3\right)=-\frac{11}{6}$
(d) Compute the standard deviation.

Answer: $\sigma_{X}=\sqrt{\frac{5}{12}}$.
9. Find the expected value, the median and the mode of the discrete random variable X having the probability distribution $f_{X}(x)=|x-2| / 7, x=-1,0,1,3$.
Answer: Expected value:

$$
E(X)=\sum_{j=1}^{4} x_{j} f_{X}\left(x_{j}\right)=-1 \times \frac{3}{7}+0 \times \frac{2}{7}+1 \times \frac{1}{7}+3 \times \frac{3}{7}=\frac{1}{7}
$$

Mode:

$$
\operatorname{mo}(X)=\arg \max _{x \in \mathbb{R}} f_{X}(x)=\arg \max _{x \in \mathbb{R}} P(X=x)=-1
$$

Median:

$$
m e(X)=\min \left\{x \in \mathbb{R}: F_{X}(x) \geq 0.5\right\}=0
$$

because,

$$
F_{X}(x)= \begin{cases}0, & x<-1 \\ 3 / 7, & -1 \leq x<0 \\ 5 / 7, & 0 \leq x<1 \\ 6 / 7, & 1 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

10. Find the expected value, the median and the mode, of the random variable Y whose probability density is given by

$$
f_{Y}(y)=\left\{\begin{array}{cc}
(y+1) / 8 & \text { for } 2 \leq y \leq 4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Answer: Expected value:

$$
E(Y)=\int_{-\infty}^{+\infty} y f_{Y}(y) d y=\int_{2}^{4} \frac{y}{8}(y+1) d y=\frac{37}{12}
$$

Mode:

$$
m o(Y)=\arg \max _{y \in \mathbb{R}} f_{Y}(y)=4
$$

because the density function is strictly increasing and positive in the interval $(2,4)$. Median:

$$
m e(X): F_{X}(m e(X))=0.5 \Leftrightarrow m e(X)=\sqrt{17}-1
$$

because,

$$
F_{X}(x)= \begin{cases}0, & x<2 \\ y^{2} / 16+y / 8-1 / 2, & 2 \leq x<4 \\ 1, & x \geq 4\end{cases}
$$

11. Let X be a random variable that has the probability function $f_{X}(x)=1 / 2$ for for $x=-2$ and $x=2$.
(a) Find $E(X), E\left(X^{2}\right)$ and σ_{X}^{2}.

Answer:

$$
\begin{aligned}
E(X) & =-2 f_{X}(-2)+2 f_{X}(2)=0 \\
E\left(X^{2}\right) & =(-2)^{4} f_{X}(-2)+2^{2} f_{X}(2)=4 \\
\sigma_{X}^{2} & =E\left(X^{2}\right)-(E(X))^{2}=4 .
\end{aligned}
$$

(b) Calculate the the mode and median.

Answer:Mode:

$$
m o(X)=\arg \max _{x \in \mathbb{R}} f_{X}(x)=\arg \max _{x \in \mathbb{R}} P(X=x)=-2 \text { and } 2
$$

Median:

$$
m e(X)=\min \left\{x \in \mathbb{R}: F_{X}(x) \geq 0.5\right\}=-2
$$

because

$$
F_{X}(x)= \begin{cases}0, & x<-2 \\ \frac{1}{2}, & -2 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

(c) Calculate first and third quartiles.

First quartile:

$$
q_{0.25}(X)=\min \left\{x \in \mathbb{R}: F_{X}(x) \geq 0.25\right\}=-2
$$

Third quartile:

$$
q_{0.75}(X)=\min \left\{x \in \mathbb{R}: F_{X}(x) \geq 0.75\right\}=2 .
$$

(d) Compute the standard deviation.

Answer: $\sigma_{X}=2$.
(e) Compute $\operatorname{Var}(2 X-2)$

Answer: 16.
12. Let X be a random variable that has probability density function

$$
f_{X}(x)=\left\{\begin{array}{cc}
x & \text { for } 0<x<1 \\
2-x & \text { for } 1 \leq x<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find the expected value, the median and the mode of the random variable X.

Answer: Expected value:

$$
E(X)=\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{0}^{1} x^{2} d x+\int_{1}^{2} 2 x-x^{2} d x=1
$$

Mode:

$$
m o(X)=\arg \max _{x \in \mathbb{R}} f_{X}(x)=1
$$

because f_{X} is an increasing function in $(0,1)$ and a decreasing function in $[1,2)$. Outside of $(0,2)$ the function is constant and equals zero.
Median:

$$
m e(X): F_{X}(m e(X))=0.5 \Leftrightarrow m e(X)=1,
$$

because

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{2}, & 0 \leq x<1 \\ 2 x-1-\frac{x^{2}}{2}, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

(b) Compute the variance of $g(X)=2 X+3$.

Answer: Taking into account the properties of the variance, we have that $\operatorname{Var}(g(X))=4 \operatorname{Var}(X)$. Then,

$$
\operatorname{Var}(2 X+3)=4 \operatorname{Var}(X)=4\left(E\left(X^{2}\right)-E^{2}(X)\right)
$$

Since

$$
E\left(X^{2}\right)=\int_{-\infty}^{+\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{3} d x+\int_{1}^{2} 2 x^{2}-x^{3} d x=\frac{7}{6}
$$

then,

$$
\operatorname{Var}(2 X+3)=4 \operatorname{Var}(X)=4\left(E\left(X^{2}\right)-E^{2}(X)\right)=4(7 / 6-1)=2 / 3
$$

13. Let X be a random variable that has probability density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{x \log (3)} & \text { for } 1 \leq x \leq 3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find $E(X)$, the median and the mode of X.

Answer: $E(X)=\frac{2}{\log (3)}, m o(X)=1$ and $m e(X)=\sqrt{3}$.
(b) Find $E\left(X^{2}\right)$ and $E\left(X^{3}\right)$.

Answer: $E\left(X^{2}\right)=\frac{4}{\log (3)}$. and $E\left(X^{3}\right)=\frac{26}{3 \log (3)}$.
(c) Use the results of part (a) and (b) to determine $E\left(X^{3}+2 X^{2}-3 X+1\right)$

Answer: $E\left(X^{3}+2 X^{2}-3 X+1\right)=1+\frac{32}{3 \log (3)}$
(d) Compute the standard deviation.

Answer: $\sigma_{X}=\frac{2 \sqrt{\log (3)-1}}{(\log (3))^{2}}$.
14. Let X be a random variable such that

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & a<x<b \\ 0 & \end{cases}
$$

(a) Find the moment generating function of X.

Answer: The moment generating function is, by definition given by

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right)=\int_{-\infty}^{+\infty} e^{t x} f_{X}(x) d x=\frac{1}{b-a} \int_{a}^{b} e^{t x} d x \\
& = \begin{cases}\frac{1}{t(b-a)}\left(e^{b t}-e^{a t}\right), & t>0 \\
1, & t=0\end{cases}
\end{aligned}
$$

(b) Calculate the first and third quantiles.

Answer: Since the cumulative distribution function is given by

$$
F_{X}(x)= \begin{cases}0, & x<a \\ \frac{x-a}{b-a}, & a \leq x<b \\ 1, & x \geq b\end{cases}
$$

the first and third quartiles are given by

$$
q_{0.25}=0.25(b-a)+a \quad \text { and } \quad q_{0.75}=0.75(b-a)+a
$$

15. Find the moment-generating function of the discrete random variable X that has the probability distribution given by

$$
f_{X}(x)=2\left(\frac{1}{3}\right)^{x}, x=1,2, \ldots
$$

Use it to find the values of μ_{1}^{\prime} and μ_{2}^{\prime}.
Answer: The moment generating function is given by

$$
M_{X}(t)=E\left(e^{X t}\right)=\sum_{x=1}^{\infty} e^{x t} f_{X}(x)=2 \sum_{x=1}^{\infty} e^{x t} \frac{1}{3^{x}}=\sum_{x=1}^{\infty}\left(\frac{e^{t}}{3}\right)^{x}=\frac{2 e^{t}}{3-e^{t}}
$$

for $0 \leq t<\ln (3)$. It is a matter of calculations to see that

$$
\begin{align*}
M_{X}^{\prime}(t) & =\frac{6 e^{t}}{\left(3-e^{t}\right)^{2}} \tag{1}\\
M_{X}^{\prime \prime}(t) & =\frac{6 e^{t}\left(3-e^{t}\right)^{2}+12 e^{2 t}\left(3-e^{t}\right)}{\left(3-e^{t}\right)^{4}} \tag{2}
\end{align*}
$$

Finally,

$$
\begin{array}{r}
\mu_{1}^{\prime}=M_{X}^{\prime}(0)=\frac{3}{2} \\
\mu_{2}^{\prime}=M_{X}^{\prime \prime}(0)=3 \tag{4}
\end{array}
$$

16. Derive the moment generating function of the random variable has the probability density function $f(x)=e^{-|x|} / 2$ for $x \in \mathbb{R}$ and use it to find σ_{X}^{2}.
Answer: The moment generating function is given by

$$
M_{X}(t)=E\left(e^{X t}\right)=\int_{-\infty}^{+\infty} e^{t x} f_{X}(x) d x=\int_{-\infty}^{0} e^{t x} \frac{e^{x}}{2} d x+\int_{0}^{+\infty} e^{t x} \frac{e^{-x}}{2} d x=\frac{1}{1-t^{2}}
$$

Taking into account that

$$
\begin{aligned}
& M_{X}^{\prime}(t)=\frac{-1}{2(t+1)^{2}}+\frac{1}{2(t-1)^{2}} \\
& M_{X}^{\prime \prime}(t)=\frac{1}{(t+1)^{3}}-\frac{1}{(t-1)^{3}} .
\end{aligned}
$$

Therefore,

$$
E(X)=M_{X}^{\prime}(0)=0 \quad \text { and } \quad E\left(X^{2}\right)=M_{X}^{\prime \prime}(0)=2
$$

and, consequently,

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=2
$$

17. Let X and Y be two independent random variables such that the moment generating function of X is given by

$$
M_{X}(t)=0.2+0.5 e^{t}+0.3 e^{2 t}
$$

and the probability function of Y is given by

$$
f_{Y}(y)= \begin{cases}0.3, & y=-1 \\ 0.5, & y=1 \\ 0.2, & y=3 \\ 0, & \text { otherwise }\end{cases}
$$

a) Compute the cumulative distribution function of Y.

Solution: By definition, we can compute the CDF doing

$$
F_{Y}(y)=P(Y \leq y)= \begin{cases}0, & y<-1 \\ 0.3, & -1 \leq y<1 \\ 0.8, & 1 \leq y<3 \\ 1, & x \geq 3\end{cases}
$$

b) Compute the moment generating function of Y.

Solution:The moment generating function is, by definition,

$$
\begin{aligned}
M_{Y}(t) & =E\left(e^{Y t}\right)=\sum_{y \in D_{Y}} y e^{y t} \\
& =0.3 e^{-t}+0.5 e^{t}+0.2 e^{3 t}
\end{aligned}
$$

c) Compute the mode and the median of Y.

Solution:

$$
\begin{aligned}
m o(X) & =\arg \max _{x \in \mathbb{R}} P(X=x) \\
& =1 \\
m e(X) & =\min \{x \in \mathbb{R}: F(x) \geq 0.5\} \\
& =1
\end{aligned}
$$

d) Compute the coefficient of variation of X.

Solution: The coefficient of variation of X is, by definition $\rho_{X}=\sigma_{X} / \mu_{X}$. Then, one has to compute

$$
\begin{aligned}
E(X) & =M_{X}^{\prime}(0)
\end{aligned}=\left.\left(0.5 e^{t}+0.6 e^{2 t}\right)\right|_{t=0}=1.1 .
$$

Then, $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=49 / 100$ and, consequently, $\sigma_{X}=\sqrt{49 / 100}=$ $7 / 10$. The coefficient of variation is

$$
\rho_{X}=\frac{\sigma_{X}}{\mu_{X}}=\frac{7 / 10}{11 / 10}=\frac{7}{11} .
$$

e) Let Z be the random variable given by $Z=a Y+b$. Find a and b such that $M_{X}(t)=M_{Z}(t)$.
Solution: We may notice that

$$
M_{Z}(t)=E\left(e^{(a Y+b) t}\right)=e^{b t} M_{Y}(a t)=e^{b t}\left(0.3 e^{-a t}+0.5 e^{a t}+0.2 e^{3 a t}\right)
$$

Comparing $M_{Z}(t)$ with $M_{X}(t)=0.2+0.5 e^{t}+0.3 e^{2 t}$ we get that

$$
\left\{\begin{array} { l }
{ 3 a + b = 0 } \\
{ a + b = 1 } \\
{ b - a = 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=-1 / 2 \\
b=3 / 2
\end{array}\right.\right.
$$

f) Compute the moment generating function of $W=X+Y$.

Solution: Since X and Y are two independent random variables we have

$$
M_{W}(t)=E\left(e^{t W}\right)=E\left(e^{t X}\right) E\left(e^{t Y}\right)=M_{X}(t) M_{Y}(t)
$$

