ISEG - Lisbon School of Economics and Management

List of Exercises - Chapter 2
$2^{\text {nd }}$ Semester of 2019/2020

October 21, 2020

1. For each of the following, determine whether the given values can serve as the values of a probability function of a random variable with the range $x=1,2,3$, and 4 :
a) $f(1)=0.25, f(2)=0.75, f(3)=0.25$, and $f(4)=-0.25$;

Answer: f is not a probability function because $f(4)<0$, which is not allowed.
b) $f(1)=0.15, f(2)=0.27, f(3)=0.29$, and $f(4)=0.29$;

Answer: f can be a probability function because $f(x)>0$ for all x in the range specified and

$$
\sum_{x=1}^{4} f(x)=1
$$

c) $f(1)=1 / 19, f(2)=10 / 19, f(3)=2 / 19$, and $f(4)=5 / 19$.

Answer: f is not a probability function because

$$
\sum_{x=1}^{4} f(x)=\frac{18}{19} \neq 1
$$

2. Verify that $f(x)=2 x /[k(k+1)]$ for $x=1,2,3, \ldots, k$ can serve as the probability function of a random variable with the given range.
3. For what values of k can $f(x)=(1-k) k^{x}$ serve as the values of the probability function of a random variable with the countably infinite range $x=0,1,2, \ldots$?
Answer: $k \in[0,1[$
4. Show that $f(x)=1 / x$ cannot serve as the values of the probability function of a random variable with the countably infinite range $x=1,2,3, \ldots$.
5. For each of the following, determine whether the given values can serve as the values of a cumulative distribution function of a random variable with the range $x=1,2,3$, and 4:
(a) $F(1)=0.3, F(2)=0.5, F(3)=0.8$, and $F(4)=1.2$;

Answer: $\quad F$ is not a cumulative distribution function because $F(4)>1$, which is not allowed because a CDF has to verify $0 \leq F \leq 1$.
(b) $F(1)=0.5, F(2)=0.4, F(3)=0.7$, and $F(4)=1.0$;

Answer: $\quad F$ is not a cumulative distribution function because $F(2)<F(1)$, which means that F decreases, which is not allowed.
(c) $F(1)=0.25, F(2)=0.61, F(3)=0.83$, and $F(4)=1.0$.

Answer: F can be a cumulative distribution function because it seems that F is non-decreasing, $0 \leq F \leq 1$ and F is right continuous.
6. If X has the cumulative distribution function

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & \text { for } x<1 \\
1 / 3 & \text { for } 1 \leq x<4 \\
1 / 2 & \text { for } 4 \leq x<6 \\
5 / 6 & \text { for } 6 \leq x<10 \\
1 & \text { for } x \geq 10
\end{array}\right.
$$

find
(a) $P(2<X \leq 6)$;

Answer: $\quad P(2<X \leq 6)=F_{X}(6)-F_{X}(2)=\frac{1}{2}$
(b) $P(X=4)$;

Answer: $\quad P(X=4)=F_{X}(4)-F_{X}\left(4^{-}\right)=\frac{1}{6}$.
(c) the probability function of X.

Answer:

$$
f_{X}(x)= \begin{cases}\frac{1}{3}, & x=1 \\ \frac{1}{6}, & x=4 \\ \frac{1}{3}, & x=6 \\ \frac{1}{6}, & x=10 \\ 0, & \text { otherwise }\end{cases}
$$

7. Find the cumulative distribution function of the random variable that has the probability function $f(x)=x / 15$ for $x=1,2,3,4,5$.

Answer: The cumulative distribution function is

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<1 \\
\frac{1}{15}, & 1<x \leq 2 \\
\frac{3}{15}, & 2<x \leq 3 \\
\frac{6}{15}, & 3<x \leq 4 \\
\frac{10}{15}, & 4<x \leq 5 \\
1, & x \geq 5
\end{array} .\right.
$$

8. To make a study about the quality of public transports in a certain city, the Mayor wants to know how many people arrive at a bus stop to catch a bus between two consecutive bus arrivals. Let X be a random variable that provides this information, with the following probability function:

x	0	1	2	3	4	5	6 or more
$P(X=x)$	0.1	0.15	0.20	0.25	a	b	0.05

Find a and b such that
a) $P(X \geq 5)=0.15$;

Answer: $a=0.15$ and $b=0.1$
b) $P(X \in\{1,4\})=0.35$;

Answer: $a=0.2$ and $b=0.05$
c) $F_{X}(4)=0.8$.

Answer: $a=0.1$ and $b=0.15$
9. The probability density of the continuous random variable X is given by

$$
f_{X}(x)=\left\{\begin{array}{cl}
1 / 5 & 2<x<7 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Draw its graph and verify that the total area under the curve (above the x -axis) is equal to 1 .
(b) Find $P(3<X<5)$.

Answer: $P(3<X<5)=\frac{2}{5}$
10. Let $f_{X}(x)=e^{-x}$ for $0<x<+\infty$.
(a) Show that $f_{X}(x)$ represents a probability density function.
(b) Sketch a graph of this function and indicate the area associated with the probability that $X>1$.
(c) Calculate the probability that $X>1$.

Answer: $P(X>1)=e^{-1}$.
11. Let $f_{X}(x)=3 x^{2}$ for $0<x<1$.
(a) Show that $f_{X}(x)$ represents a density function.
(b) Sketch a graph of this function, and indicate the area associated with the probability that $0.1<X<0.5$.
(c) Calculate the probability that $0.1<X<0.5$.

Answer: $P(0.1<X<0.5)=0.124$.
12. The probability density function of the random variable X is given by

$$
f_{X}(x)=\left\{\begin{array}{cl}
\frac{c}{\sqrt{x}} & 0<x<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find
(a) the value of c;

Answer: f_{X} is a density probability function, thus it satisfies

$$
f_{X}(x) \geq 0, \forall x \in \mathbb{R} \quad \text { and } \quad \int_{-\infty}^{+\infty} f_{X}(x) d x=1
$$

Form the first condition, we get that $c \geq 0$ and from the second we obtain

$$
\int_{-\infty}^{+\infty} f_{X}(x) d x=1 \Leftrightarrow \int_{0}^{4} \frac{c}{\sqrt{x}} d x=1 \Leftrightarrow c=\frac{1}{4}
$$

(b) $P(X<14)$ and $P(X>1)$.

Answer:

$$
\begin{align*}
& P(X<14)=\int_{-\infty}^{14} f_{X}(x) d x=\int_{0}^{4} f_{X}(x) d x=1 \tag{1}\\
& P(X>1)=\int_{1}^{+\infty} f_{X}(x) d x=\int_{1}^{4} \frac{1}{4 \sqrt{x}} d x=\frac{1}{2} \tag{2}
\end{align*}
$$

13. The probability density of the random variable Z is given by

$$
f_{Z}(z)=\left\{\begin{array}{cc}
k z e^{-z^{2}} & z>0 \\
0 & z \leq 0
\end{array}\right.
$$

Find k.
Answer: $k=2$.
14. Find the cumulative distribution function of the random variable X whose probability density is given by

$$
f_{X}(x)= \begin{cases}\frac{1}{3}, & 0<x<1 \\ \frac{1}{3}, & 2<x<4 \\ 0, & \text { elsewhere }\end{cases}
$$

Also sketch the graphs of the probability density and distribution functions.
Answer: The cumulative distribution function is the $F_{X}(x)=P(X \leq x)=$ $\int_{-\infty}^{x} f_{X}(u) d u$. Therefore,

$$
F_{X}(x)= \begin{cases}0, & x \leq 0 \\ \frac{x}{3}, & 0 \leq x<1 \\ \frac{1}{3}, & 1 \leq x<2 \\ \frac{x}{3}-\frac{1}{3}, & 2 \leq x<4 \\ 1, & x \geq 4\end{cases}
$$

15. Find the cumulative distribution function of the random variable X whose probability density is given by

$$
f_{X}(x)= \begin{cases}\frac{x}{2}, & 0<x \leq 1 \\ \frac{1}{2}, & 1<x \leq 2 \\ \frac{3-x}{2}, & 2<x<3 \\ 0, & \text { elsewhere }\end{cases}
$$

Also sketch the graphs of these probability density and distribution functions.
Answer:

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{4}, & 0 \leq x<1 \\ \frac{x}{2}-\frac{1}{4}, & 1 \leq x<2 \\ -\frac{5}{4}+\frac{3}{2} x-\frac{x^{2}}{4}, & 2 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

16. The cumulative distribution function of the random variable X is given by

$$
F_{X}(x)=\left\{\begin{array}{cl}
1-(1+x) e^{-x} & \text { for } x>0 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find $P(X \leq 2), P(1<X<3)$, and $P(X>4)$.

Answer:

$$
\begin{aligned}
& P(X \leq 2)=F_{X}(2)=1-3 e^{-2} \\
& P(1<X<3)=P(1<X \leq 3)=F_{X}(3)-F_{X}(1)=2 e^{-1}-4 e^{-3} \\
& P(X>4)=1-F_{X}(4)=5 e^{-4}
\end{aligned}
$$

17. The distribution function of the random variable X is given by

$$
F_{X}(x)= \begin{cases}0, & x \leq-1 \\ \frac{x+1}{2}, & -1 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Find
a) the probability function f_{X};

Answer: It is known that $f_{X}(x)=F_{X}^{\prime}(x)$ almost everywhere. Therefore,

$$
f_{X}(x)= \begin{cases}\frac{1}{2}, & -1<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

b) $P\left(-\frac{1}{2}<X \leq-\frac{1}{2}\right)$;

Answer:

$$
P\left(-\frac{1}{2}<X \leq-\frac{1}{2}\right)=F_{X}\left(-\frac{1}{2}\right)-F_{X}\left(-\frac{1}{2}\right)=0 .
$$

c) $P(2<X<3)$.

Answer:

$$
P(2<X<3)=P(2<X \leq 3)=F_{X}(3)-F_{X}(2)=0
$$

18. The cumulative distribution function of the random variable Z is given by

$$
F_{Z}(z)=\left\{\begin{array}{cc}
0 & \text { for } z<-2 \\
\frac{z+4}{8} & \text { for }-2 \leq z<2 \\
1 & \text { for } z \geq 2
\end{array}\right.
$$

a) Sketch the graph of the distribution function F_{Z};
b) Is Z a continuous random variable? Why?

Answer: No, because F is not continuous.
c) Compute $P(Z=-2), P(Z=2), P(-2<Z<1)$, and $P(0 \leq Z \leq 2)$.

Answer: $P(Z=-2)=1 / 4, P(Z=2)=1 / 4, P(-2<Z<1)=3 / 8, P(0 \leq$ $Z \leq 2)=1 / 2$
19. Let X be a random variable with cumulative distribution function given by

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{1}{6} x, & 0 \leq x<1 \\ \frac{1}{3}, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

a) Prove that X is a mixed random variable;

Answer: X is a mixed random variable if (a) $D_{X} \neq \emptyset$ and $P\left(X \in D_{X}\right)<1$ and (b) there is $\lambda \in(0,1), X_{1}$ a discrete random variable and X_{2} a continuous random variable such that $F_{X}(x)=\lambda F_{X_{1}}(x)+(1-\lambda) F_{X_{2}}(x)$.
(a) $D_{X}=\{1,2\}$ and

$$
\begin{aligned}
P\left(X \in D_{X}\right) & =P(X=1)+P(X=2) \\
& =F_{X}(1)-F_{X}\left(1^{-}\right)+F_{X}(2)-F_{X}\left(2^{-}\right) \\
& =\left(\frac{1}{3}-\frac{1}{6}\right)+\left(1-\frac{1}{3}\right)=\frac{5}{6}<1
\end{aligned}
$$

(b)

We notice that

$$
\begin{aligned}
P(X=x) & =F_{X}(x)-F_{X}\left(x^{-}\right)=\lambda\left(F_{X_{1}}(x)-F_{X_{1}}\left(x^{-}\right)\right)+(1-\lambda)\left(F_{X_{2}}(x)-F_{X_{2}}\left(x^{-}\right)\right) \\
& =\lambda\left(F_{X_{1}}(x)-F_{X_{1}}\left(x^{-}\right)\right)=\lambda P\left(X_{1}=x\right) .
\end{aligned}
$$

Therefore,

$$
P(X=1)+P(X=2)=\lambda\left(P\left(X_{1}=1\right)+P\left(X_{2}=1\right)\right)=\lambda
$$

because, $P\left(X_{1}=1\right)+P\left(X_{2}=2\right)=1 .\left(D_{X_{1}}=\{1,2\}\right.$ and X_{1} is discrete random variable.) It is a matter os calculations to see that

$$
\begin{aligned}
F_{X}(x) & =\frac{5}{6} \times \begin{cases}0, & x<1 \\
\frac{1}{5}, & 1 \leq x<2+\frac{1}{6} \times \begin{cases}0, & x<0 \\
1, & x \geq 2\end{cases} \\
x, & 0 \leq x<1 \\
1, & x \geq 1\end{cases} \\
& =\frac{5}{6} F_{X_{1}}(x)+\frac{1}{6} F_{X_{2}}(x)
\end{aligned}
$$

b) Calculate the probabilities: $P(X<1 / 2), P(X<3 / 2), P(1 / 2<X<2), P(X=$ 1), $P(X>1), P(X=2)$.

Answer:

$$
\begin{aligned}
P(X<1 / 2) & =F_{X}(1 / 2)=\frac{1}{12} \\
P(X<3 / 2) & =F_{X}(3 / 2)=\frac{1}{3} \\
P(1 / 2<X<2) & =P(1 / 2<X \leq 2)-P(X=2)=F_{X}(2)-F_{X}(1 / 2)-P(X=2)=\frac{1}{4} \\
P(X=1) & =F_{X}(1)-F_{X}\left(1^{-}\right)=\frac{1}{3}-\frac{1}{6}=\frac{1}{6} \\
P(X>1) & =1-F_{X}(1)=1-\frac{1}{3}=\frac{2}{3} \\
P(X=2) & =F_{X}(2)-F_{X}\left(2^{-}\right)=1-\frac{1}{3}=\frac{2}{3} .
\end{aligned}
$$

20. If the probability density of X is given by

$$
f_{X}(x)= \begin{cases}\frac{x}{2}, & 0<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

a) Compute the cumulative distribution function of $Y=X^{3}$.

Solution: We start by calculating the Cumulative distribution function.

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{3} \leq y\right)=P(X \leq \sqrt[3]{y})=F_{X}(\sqrt[3]{y})
$$

It is a matter of computations to see that

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{x^{2}}{4}, & 0 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

Therefore, we get the following result

$$
F_{Y}(y)=F_{X}(\sqrt[3]{y})= \begin{cases}0, & y<0 \\ \frac{y^{\frac{2}{3}}}{4}, & 0 \leq y<8 \\ 1, & y \geq 8\end{cases}
$$

b) Compute the probability density function of $Y=X^{3}$.

Solution: We know that $f_{Y}(y)=F_{Y}(y)$ almost everywhere. Therefore, computing the derivative of F_{Y} we get

$$
f_{Y}(y)= \begin{cases}\frac{1}{6} y^{-\frac{1}{3}}, & 0<y<8 \\ 0, & \text { otherwise }\end{cases}
$$

21. Let X be a discrete random variable such that

$$
P(X=x)=\frac{1}{7}, \quad \text { with } x \in\{-3,-2,-1,0,1,2,3\} .
$$

Determine the probability function of $Y=X^{2}-3 X$.
Answer: Firstly, we notice that which means that

X	-3	-2	-1	0	1	2	3
$X^{2}-3 X$	18	10	4	0	-2	-2	0

$$
\begin{aligned}
& P(Y=-2)=P(X=1)+P(X=2)=\frac{2}{7} \\
& P(Y=0)=P(X=0)+P(X=3)=\frac{2}{7} \\
& P(Y=4)=P(X=-1)=\frac{1}{7} \\
& P(Y=10)=P(X=-2)=\frac{1}{7} \\
& P(Y=18)=P(X=-3)=\frac{1}{7} \\
& P(Y=y)=0, \quad \text { for all } x \notin\{-2,0,4,10,18\} .
\end{aligned}
$$

22. If the probability density of X is given by

$$
f_{X}(x)= \begin{cases}\frac{3 x^{2}}{2}, & -1<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Determine the density function of $Y=|X|$ and $Z=X^{2}$.
Answer:

$$
f_{Y}(y)=\left\{\begin{array}{ll}
3 y^{2}, & 0<y<1 \\
0, & \text { elsewhere }
\end{array} \quad \text { and } \quad f_{Z}(z)= \begin{cases}\frac{3 z^{1 / 2}}{2}, & 0<z<1 \\
0, & \text { elsewhere }\end{cases}\right.
$$

