# ISEG - Lisbon School of Economics and Management 

List of Exercises - Chapter 2<br>$1^{\text {st }}$ Semester of 2020/2021

March 3, 2021

1. For each of the following, determine whether the given values can serve as the values of a probability function of a random variable with the range $x=1,2,3$, and 4 :
a) $f(1)=0.25, f(2)=0.75, f(3)=0.25$, and $f(4)=-0.25$;
b) $f(1)=0.15, f(2)=0.27, f(3)=0.29$, and $f(4)=0.29$;
c) $f(1)=1 / 19, f(2)=10 / 19, f(3)=2 / 19$, and $f(4)=5 / 19$.
2. Verify that $f(x)=2 x /[k(k+1)]$ for $x=1,2,3, \ldots, k$ can serve as the probability function of a random variable with the given range.
3. For what values of $k$ can $f(x)=(1-k) k^{x}$ serve as the values of the probability function of a random variable with the countably infinite range $x=0,1,2, \ldots$ ?
4. Show that $f(x)=1 / x$ cannot serve as the values of the probability function of a random variable with the countably infinite range $x=1,2,3, \ldots$.
5. For each of the following, determine whether the given values can serve as the values of a cumulative distribution function of a random variable with the range $x=1,2,3$, and 4:
(a) $F(1)=0.3, F(2)=0.5, F(3)=0.8$, and $F(4)=1.2$;
(b) $F(1)=0.5, F(2)=0.4, F(3)=0.7$, and $F(4)=1.0$;
(c) $F(1)=0.25, F(2)=0.61, F(3)=0.83$, and $F(4)=1.0$.
6. If $X$ has the cumulative distribution function

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & \text { for } x<1 \\
1 / 3 & \text { for } 1 \leq x<4 \\
1 / 2 & \text { for } 4 \leq x<6 \\
5 / 6 & \text { for } 6 \leq x<10 \\
1 & \text { for } x \geq 10
\end{array}\right.
$$

find
(a) $P(2<X \leq 6)$;
(b) $P(X=4)$;
(c) the probability function of $X$.
7. Find the cumulative distribution function of the random variable that has the probability function $f(x)=x / 15$ for $x=1,2,3,4,5$.
8. To make a study about the quality of public transports in a certain city, the Mayor wants to know how many people arrive at a bus stop to catch a bus between two consecutive bus arrivals. Let $X$ be a random variable that provides this information, with the following probability function:

| $x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 or more |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | 0.1 | 0.15 | 0.20 | 0.25 | $a$ | $b$ | 0.05 |

Find $a$ and $b$ such that
a) $P(X \geq 5)=0.15$;
b) $P(X \in\{1,4\})=0.35$;
c) $F_{X}(4)=0.8$.
9. The probability density of the continuous random variable $X$ is given by

$$
f_{X}(x)=\left\{\begin{array}{cl}
1 / 5 & 2<x<7 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Draw its graph and verify that the total area under the curve (above the x-axis) is equal to 1 .
(b) Find $P(3<X<5)$.
10. Let $f_{X}(x)=e^{-x}$ for $0<x<+\infty$.
(a) Show that $f_{X}(x)$ represents a probability density function.
(b) Sketch a graph of this function and indicate the area associated with the probability that $X>1$.
(c) Calculate the probability that $X>1$.
11. Let $f_{X}(x)=3 x^{2}$ for $0<x<1$.
(a) Show that $f_{X}(x)$ represents a density function.
(b) Sketch a graph of this function, and indicate the area associated with the probability that $0.1<X<0.5$.
(c) Calculate the probability that $0.1<X<0.5$.
12. The probability density function of the random variable $X$ is given by

$$
f_{X}(x)=\left\{\begin{array}{cl}
\frac{c}{\sqrt{x}} & 0<x<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find
(a) the value of $c$;
(b) $P(X<14)$ and $P(X>1)$.
13. The probability density of the random variable $Z$ is given by

$$
f_{Z}(z)=\left\{\begin{array}{cc}
k z e^{-z^{2}} & z>0 \\
0 & z \leq 0
\end{array}\right.
$$

Find $k$.
14. Find the cumulative distribution function of the random variable $X$ whose probability density is given by

$$
f_{X}(x)= \begin{cases}\frac{1}{3}, & 0<x<1 \\ \frac{1}{3}, & 2<x<4 \\ 0, & \text { elsewhere }\end{cases}
$$

Also sketch the graphs of the probability density and distribution functions.
15. Find the cumulative distribution function of the random variable $X$ whose probability density is given by

$$
f_{X}(x)= \begin{cases}\frac{x}{2}, & 0<x \leq 1 \\ \frac{1}{2}, & 1<x \leq 2 \\ \frac{3-x}{2}, & 2<x<3 \\ 0, & \text { elsewhere }\end{cases}
$$

Also sketch the graphs of these probability density and distribution functions.
16. The cumulative distribution function of the random variable $X$ is given by

$$
F_{X}(x)=\left\{\begin{array}{cl}
1-(1+x) e^{-x} & \text { for } x>0 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find $P(X \leq 2), P(1<X<3)$, and $P(X>4)$.
17. The distribution function of the random variable $X$ is given by

$$
F_{X}(x)= \begin{cases}0, & x \leq-1 \\ \frac{x+1}{2}, & -1 \leq x<1 \\ 1, & x \geq 1\end{cases}
$$

Find
a) the probability function $f_{X}$;
b) $P\left(-\frac{1}{2}<X \leq-\frac{1}{2}\right)$;
c) $P(2<X<3)$.
18. The cumulative distribution function of the random variable $Z$ is given by

$$
F_{Z}(z)=\left\{\begin{array}{cc}
0 & \text { for } z<-2 \\
\frac{z+4}{8} & \text { for }-2 \leq z<2 \\
1 & \text { for } z \geq 2
\end{array}\right.
$$

a) Sketch the graph of the distribution function $F_{Z}$;
b) Is $Z$ a continuous random variable? Why?
c) Compute $P(Z=-2), P(Z=2), P(-2<Z<1)$, and $P(0 \leq Z \leq 2)$.
19. Let $X$ be a random variable with cumulative distribution function given by

$$
F_{X}(x)= \begin{cases}0, & x<0 \\ \frac{1}{6} x, & 0 \leq x<1 \\ \frac{1}{3}, & 1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

a) Prove that $X$ is a mixed random variable;
b) Calculate the probabilities: $P(X<1 / 2), P(X<3 / 2), P(1 / 2<X<2), P(X=$ 1), $P(X>1), P(X=2)$.
20. If the probability density of $X$ is given by

$$
f_{X}(x)= \begin{cases}\frac{x}{2}, & 0<x<2 \\ 0, & \text { elsewhere }\end{cases}
$$

a) Compute the cumulative distribution function of $Y=X^{3}$.
b) Compute the probability density function of $Y=X^{3}$.
21. Let $X$ be a discrete random variable such that

$$
P(X=x)=\frac{1}{7}, \quad \text { with } x \in\{-3,-2,-1,0,1,2,3\} .
$$

Determine the probability function of $Y=X^{2}-3 X$.
22. If the probability density of $X$ is given by

$$
f_{X}(x)= \begin{cases}\frac{3 x^{2}}{2}, & -1<x<1 \\ 0, & \text { elsewhere }\end{cases}
$$

Determine the cumulative distribution function of $Y=|X|$ and $Z=X^{2}$.
23. A company has received $€ 1$ million to invest in one of two projects. With probability $1 / 3$ the firm invests in project 1 , and, with probability $2 / 3$, the firm invests in project 2. Let $X_{1}$ be a discrete random variable that represents the return of project 1, in millions of $€$, and $X_{2}$ a continuous random variable that represents the return, of project 2 , in millions of $€$. The cumulative distribution function of $X_{1}$ is given by

$$
F_{X_{1}}(x)= \begin{cases}0, & x<0 \\ 1 / 3, & 0 \leq x<1 \\ 1 / 2, & 1 \leq x<2 \\ 7 / 10, & 2 \leq x<3 \\ 1, & x \geq 3\end{cases}
$$

and the probability density function of $X_{2}$ is given by

$$
f_{X_{2}}(x)= \begin{cases}1 / 3, & 0<x<1 \\ \frac{4}{45} x, & 1 \leq x<4 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute the probability function of $X_{1}$.
(b) Compute the cumulative distribution function of $X_{2}$
(c) If the firm invests in project 1, what is the probability that it gets back more than 2 million? Compute the same probability in case the firm invests in project 2.
(d) Compute $P\left(X_{2}>1 \mid X_{2}<3\right)$.
(e) Let $X$ be the amount, in millions of $€$, received by the company after its investment.
i. Find the cumulative distribution function of $X$. Classify the random variable.
ii. Compute the probability that the firm receives at least 3 million.
iii. Compute the probability that the firm has a negative profit (profit $=$ amount received minus amount invested).

